Biophysical characterization of SipA, an actin-binding protein from Salmonella enterica.
نویسندگان
چکیده
An essential step in the pathogenesis of Salmonella enterica infections is bacterial entry into non-phagocytic cells of the intestinal epithelium. Proteins injected by Salmonella into host cells stimulate cellular responses that lead to extensive actin cytoskeleton reorganization and subsequent bacterial uptake. One of these proteins, SipA, modulates actin dynamics by directly binding to F-actin. We have biophysically characterized a C-terminal fragment, SipA(446-684), which has previously been shown to retain activity. Our results show that SipA(446-684) exhibits an elongated shape with a predominantly helical conformation and predict the existence of a coiled-coil domain. We suggest that the protein is able to span two adjacent actin monomers in a filament and propose a model that is consistent with the observed effects of SipA(446-684) on actin dynamics and F-actin stability and morphology.
منابع مشابه
SipA Activation of Caspase-3 Is a Decisive Mediator of Host Cell Survival at Early Stages of Salmonella enterica Serovar Typhimurium Infection
Salmonella invasion protein A (SipA) is a dual-function effector protein that plays roles in both actin polymerization and caspase-3 activation in intestinal epithelial cells. To date its function in other cell types has remained largely unknown despite its expression in multiple cell types and its extracellular secretion during infection. Here we show that in macrophages SipA induces increased...
متن کاملAn invasion-associated Salmonella protein modulates the actin-bundling activity of plastin.
The entry of Salmonella typhimurium into nonphagocytic cells requires a panel of bacterial effector proteins that are delivered to the host cell via a type III secretion system. These proteins modulate host-cell signal-transduction pathways and the actin cytoskeleton to induce membrane ruffling and bacterial internalization. One of these bacterial effectors, termed SipA, is an actin-binding pro...
متن کاملRole of the S. typhimurium actin-binding protein SipA in bacterial internalization.
Entry of the bacterium Salmonella typhimurium into host cells requires membrane ruffling and rearrangement of the actin cytoskeleton. Here, it is shown that the bacterial protein SipA plays a critical role in this process. SipA binds directly to actin, decreases its critical concentration, and inhibits depolymerization of actin filaments. These activities result in the spatial localization and ...
متن کاملSalmonella SipA polymerizes actin by stapling filaments with nonglobular protein arms.
Like many bacterial pathogens, Salmonella spp. use a type III secretion system to inject virulence proteins into host cells. The Salmonella invasion protein A (SipA) binds host actin, enhances its polymerization near adherent extracellular bacteria, and contributes to cytoskeletal rearrangements that internalize the pathogen. By combining x-ray crystallography of SipA with electron microscopy a...
متن کاملPERP, a host tetraspanning membrane protein, is required for S almonella‐induced inflammation
Salmonella enterica Typhimurium induces intestinal inflammation through the activity of type III secreted effector (T3SE) proteins. Our prior results indicate that the secretion of the T3SE SipA and the ability of SipA to induce epithelial cell responses that lead to induction of polymorphonuclear transepithelial migration are not coupled to its direct delivery into epithelial cells from Salmon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- FEBS letters
دوره 482 1-2 شماره
صفحات -
تاریخ انتشار 2000